skip to main content


Search for: All records

Creators/Authors contains: "Pichon, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Here, we use the Horizon–active galactic nucleus (AGN) simulation to test whether the spins of supermassive black hole (SMBH) in merger-free galaxies are higher. We select samples using an observationally motivated bulge-to-total mass ratio of <0.1, along with two simulation-motivated thresholds selecting galaxies which have not undergone a galaxy merger since z = 2, and those SMBHs with $\lt 10~{{\ \rm per\ cent}}$ of their mass due to SMBH mergers. We find higher spins (>5σ) in all three sample compared to the rest of the population. In addition, we find that SMBHs with their growth dominated by BH mergers following galaxy mergers are less likely to be aligned with their galaxy spin than those that have grown through accretion in the absence of galaxy mergers (3.4σ). We discuss the implications this has for the impact of active galactic nucleus (AGN) feedback, finding that merger-free SMBHs spend on average 91 per cent of their lifetimes since z = 2 in a radio mode of feedback (88 per cent for merger-dominated galaxies). Given that previous observational and theoretical works have concluded that merger-free processes dominate SMBH-galaxy co-evolution, our results suggest that this co-evolution could be regulated by radio mode AGN feedback.

     
    more » « less
  2. ABSTRACT We present LyMAS2, an improved version of the ‘Lyman-α Mass Association Scheme’ aiming at predicting the large-scale 3D clustering statistics of the Lyman-α forest (Ly α) from moderate-resolution simulations of the dark matter (DM) distribution, with prior calibrations from high-resolution hydrodynamical simulations of smaller volumes. In this study, calibrations are derived from the Horizon-AGN suite simulations, (100 Mpc h)−3 comoving volume, using Wiener filtering, combining information from DM density and velocity fields (i.e. velocity dispersion, vorticity, line-of-sight 1D-divergence and 3D-divergence). All new predictions have been done at z = 2.5 in redshift space, while considering the spectral resolution of the SDSS-III BOSS Survey and different DM smoothing (0.3, 0.5, and 1.0 Mpc h−1 comoving). We have tried different combinations of DM fields and found that LyMAS2, applied to the Horizon-noAGN DM fields, significantly improves the predictions of the Ly α 3D clustering statistics, especially when the DM overdensity is associated with the velocity dispersion or the vorticity fields. Compared to the hydrodynamical simulation trends, the two-point correlation functions of pseudo-spectra generated with LyMAS2 can be recovered with relative differences of ∼5 per cent even for high angles, the flux 1D power spectrum (along the light of sight) with ∼2 per cent and the flux 1D probability distribution function exactly. Finally, we have produced several large mock BOSS spectra (1.0 and 1.5 Gpc h−1) expected to lead to much more reliable and accurate theoretical predictions. 
    more » « less
  3. ABSTRACT

    Tidal features in the outskirts of galaxies yield unique information about their past interactions and are a key prediction of the hierarchical structure formation paradigm. The Vera C. Rubin Observatory is poised to deliver deep observations for potentially millions of objects with visible tidal features, but the inference of galaxy interaction histories from such features is not straightforward. Utilizing automated techniques and human visual classification in conjunction with realistic mock images produced using the NewHorizon cosmological simulation, we investigate the nature, frequency, and visibility of tidal features and debris across a range of environments and stellar masses. In our simulated sample, around 80 per cent of the flux in the tidal features around Milky Way or greater mass galaxies is detected at the 10-yr depth of the Legacy Survey of Space and Time (30–31 mag arcsec−2), falling to 60 per cent assuming a shallower final depth of 29.5 mag arcsec−2. The fraction of total flux found in tidal features increases towards higher masses, rising to 10 per cent for the most massive objects in our sample (M⋆ ∼ 1011.5 M⊙). When observed at sufficient depth, such objects frequently exhibit many distinct tidal features with complex shapes. The interpretation and characterization of such features varies significantly with image depth and object orientation, introducing significant biases in their classification. Assuming the data reduction pipeline is properly optimized, we expect the Rubin Observatory to be capable of recovering much of the flux found in the outskirts of Milky Way mass galaxies, even at intermediate redshifts (z < 0.2).

     
    more » « less
  4. ABSTRACT

    Hydrodynamical cosmological simulations have recently made great advances in reproducing galaxy mass assembly over cosmic time – as often quantified from the comparison of their predicted stellar mass functions to observed stellar mass functions from data. In this paper, we compare the clustering of galaxies from the hydrodynamical cosmological simulated light-cone Horizon-AGN to clustering measurements from the VIDEO survey observations. Using mocks built from a VIDEO-like photometry, we first explore the bias introduced into clustering measurements by using stellar masses and redshifts derived from spectral energy distribution fitting, rather than the intrinsic values. The propagation of redshift and mass statistical and systematic uncertainties in the clustering measurements causes us to underestimate the clustering amplitude. We then find that clustering and halo occupation distribution (HOD) modelling results are qualitatively similar in Horizon-AGN and VIDEO. However, at low stellar masses, Horizon-AGN underestimates the observed clustering by up to a factor of ∼3, reflecting the known excess stellar mass to halo mass ratio for Horizon-AGN low-mass haloes, already discussed in previous works. This reinforces the need for stronger regulation of star formation in low-mass haloes in the simulation. Finally, the comparison of the stellar mass to halo mass ratio in the simulated catalogue, inferred from angular clustering, to that directly measured from the simulation validates HOD modelling of clustering as a probe of the galaxy–halo connection.

     
    more » « less
  5. ABSTRACT

    We present the first detection of mass-dependent galactic spin alignments with local cosmic filaments with >2σ confidence using IFS kinematics. The 3D network of cosmic filaments is reconstructed on Mpc scales across GAlaxy and Mass Assembly fields using the cosmic web extractor DisPerSe. We assign field galaxies from the SAMI survey to their nearest filament segment in 3D and estimate the degree of alignment between SAMI galaxies’ kinematic spin axis and their nearest filament in projection. Low-mass galaxies align their spin with their nearest filament while higher mass counterparts are more likely to display an orthogonal orientation. The stellar transition mass from the first trend to the second is bracketed between $10^{10.4}$ and $10^{10.9}\, \mathrm{ M}_{\odot }$, with hints of an increase with filament scale. Consistent signals are found in the Horizon-AGN cosmological hydrodynamic simulation. This supports a scenario of early angular momentum build-up in vorticity rich quadrants around filaments at low stellar mass followed by progressive flip of spins orthogonal to the cosmic filaments through mergers at high stellar mass. Conversely, we show that dark matter only simulations post-processed with a semi-analytical model treatment of galaxy formation struggles to reproduce this alignment signal. This suggests that gas physics is key in enhancing the galaxy-filament alignment.

     
    more » « less